Numerical results

نویسندگان

  • L S kála
  • J Zamastil
چکیده

The strong coupling expansion coefficients for the ordinary and renormalized energies of the ground and first excited states of the quartic, sextic, octic and decadic anharmonic oscillators with the Hamiltonian 2 + 2 + 2 , 2 3 4 5 are computed. The expansion coefficients are also computed for higher excited states of the quartic oscillator. The large-order beha viour of the coefficients, the radii of convergence of the series and the summation rules for the coefficients are discussed. It is shown that, in contrast to the divergent weak coupling expansions, the renormalized strong coupling perturbation wavefunctions have simple form and straightforward physical interpretation. Finally, both the strong coupling perturbation approaches are compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the block numerical range

The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.

متن کامل

Some Results on Polynomial Numerical Hulls of Perturbed Matrices

In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.

متن کامل

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

Investigating the Effects of Cold Bulge Forming Speed on Thickness Variation and Mechanical Properties of Aluminum Alloys: Experimental and Numerical

In this work, cold bulge forming of an Aluminium-Magnesium (Al-Mg) sheet with a solid bulging medium is performed experimentally and numerically.  Mechanical properties and thickness variations of Al-Mg sheet are evaluated before and after the forming process.  The results indicated that the Al-Mg sheet has taken the desired shape without necking using the cold bulge forming process.  Also, the...

متن کامل

Numerical Analysis of the Primer Location Effect on Ground Vibration Caused by Blasting

Ground vibration is one of the undesirable results of blasting operations. Different methods have been proposed to predict and control ground vibration that is caused by blasting. These methods can be classified as laboratory studies, fieldwork and numerical modeling. Among these methods, numerical modeling is the one which saves time and cuts costs since it takes into account the basic princip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999